Predicting Heart Attacks using Logistic Regression

Montaz Ali School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa

28th January 2021

ション ふゆ アメリア メリア しょうくの

Outline

Mathematical Models: Linear, Polynomial, and Non-linear Regression

Linear Classification, Non-linear Transformation and Logistic Regression

Derivation of the Mathematical Optimization Model, Maximum Likelihood

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The Gradient Descent Algorithm for solution

The Generated Data Set

$$D = \{x^1, x^2, \cdots, x^N\}, x^j = (x_0, x_1, \cdots, x_n)^T, N >> n$$

Polynomial Regression: Consider the case of a single variable (say, *y*, the predictor) with the data set:

$$D=(y_1,b_1),\cdots,(y_N,b_N)$$

$$f(y) = \sum_{j=1}^{4} x_j y^{j-1}$$
 (1)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

minimizes the residual $r_i = f(y_i) - b_i$ for $i = 1 \cdots m$.

$$r = \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{pmatrix} = \begin{pmatrix} f(y_1) \\ f(y_2) \\ \vdots \\ f(y_N) \end{pmatrix} - \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{pmatrix}$$

Polynomial Regression

$$r = \begin{pmatrix} 1 & y_1 & y_1^2 & y_1^3 \\ 1 & y_2 & y_2^2 & y_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & y_N & y_N^2 & y_N^3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} - \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{pmatrix}$$
$$r = Ax - b \tag{1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We minimize $||Ax - b||^2$ which means minimizing the sum of the squared residuals $\sum_{i=1}^{N} r_i^2$, is a linear least squares problem.

Linear Regression

$$L_m(x) = \sum_{i=0}^n a_i x_i = a^T x$$
⁽²⁾

ション ふゆ アメリア メリア しょうくの

where, $x = (x_0, x_1, \dots, x_n)^T$, $a_0 = b$ and $x_0 = 1$.

The form like Eq(1), $||Ax - b||^2$, can be found and solved for *a* and the we will have a model like $L_m(x) = a^T x$.

Linear Classification

A nonlinear transformation, NLT, of $L_m(x)$ can be carried out $NLT(L_m(x)) = f(x)$, where $f(x) \in \{0, 1\}$.

Consider the sign function as your NLT, then

$$f(x) = sign(a^T x)$$

where $f(x) \in \{-1, 1\}$

We want to predict the probability of heart attack, hence we need $f(x) \in [0, 1]$.

ション ふゆ アメリア メリア しょうくの

Logistic Regression

Consider the Non-linear Transformation

$$F(x) = \frac{e^x}{1 + e^x}.$$
(3)

$$f(x) = \frac{e^{a^T x}}{1 + e^{a^T x}} \tag{4}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Our Noisy Target:

$$\Pr(\omega/x) = \begin{cases} f(x) & \text{if } \omega = 1\\ 1 - f(x) & \text{if } \omega = -1 \end{cases}$$
(5)

$$\Pr\left(\omega/x\right) = F(\omega a^T x),$$

since $F(-a^Tx) = 1 - F(a^Tx)$

Maximum Likelihood

Our Data Set

$$D = \{x^1, x^2, \cdots, x^N\}$$

Consider the following likelihood function

$$L_f(a) = \prod_{i=1}^N \Pr\left(\omega^i / x^i\right) = \prod_{i=1}^N F(\omega^i a^T x^i)$$
(6)

$$\max_{a} L_f(a) = \max_{a} \ln \prod_{i=1}^N F(\omega^i a^T x^i) = \sum_{i=1}^N \ln \left(F(\omega^i a^T x^i) \right).$$

We know the identity

$$\max_{x} f(x) = -\min_{x} (-f(x))$$

$$\min_{a} \overline{L}_{f}(a) = \min_{a} -\sum_{i=1}^{N} \ln \left(F(\omega^{i} a^{T} x^{i}) \right)$$

$$= \min_{a} \sum_{i=1}^{N} \ln \left[1 + \exp \left(-\omega^{i} a^{T} x^{i} \right) \right]$$
(7)

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Optimization Procedure

$$abla ar{L}_f(a) = \sum_{i=1}^N rac{-\omega^i x^i}{1 + e^{\omega^i a^T x^i}}$$

The procedure is as follows:

- 1. Initialize a^k , for k=0, Calculate $\nabla \overline{L}_f(a^k)$,
- Set α = 1
 Find a^{k+1} = a^k α × ∇L
 _f(a^k),
 Compare if L_f(a^{k+1}) < L_f(a^k) then set k = k + 1 and go to 5 else set α = ½ × α and go to 3.
 Calculate ∇L
 _f(a^{k+1}). Stop if ||∇L
 _f(a^{k+1})|| is small else go to 2.

ション ふゆ く は マ く ほ マ く し マ

Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?